US009164808B2

a2 United States Patent

Parker

US 9,164,808 B2
Oct. 20, 2015

(10) Patent No.:
(45) Date of Patent:

(54) VIRTUAL CONTAINER FOR NETWORK
SYSTEMS

(75) Benjamin J. Parker, Foster City, CA

(US)

Inventor:

(73) Assignee: Verizon Patent and Licensing Inc.,

Basking Ridge, NJ (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 551 days.

Notice:

")

@
(22)

Appl. No.: 13/554,324
Filed: Jul. 20, 2012

Prior Publication Data

US 2014/0026133 Al Jan. 23, 2014

(65)

Int. CI.
GOGF 9/46
GOGF 9/455
GOGF 15/173
GOGF 9/50
USS. CL
CPC ... GOGF 9/5083 (2013.01); GOGF 9/45558
(2013.01); GO6F 2009/4557 (2013.01)

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)

700 \

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,577,959 B2* 82009 Nguyenetal 718/105

* cited by examiner

Primary Examiner — Meng An
Assistant Examiner — Bing Zhao

(57) ABSTRACT

A first server is configured to receive performance data asso-
ciated with a first virtual machine. The first virtual machine
may be capable of communicating with a client device. The
first server is further configured to determine whether the first
virtual machine is overloaded based on the performance data,
and send an instruction to a second server to generate a second
virtual machine based on determining that the first virtual
machine is overloaded. The second virtual machine may be
capable of communicating with the client device. The first
server is further configured to instruct the second virtual
machine to communicate with the client device to reduce
network load associated with the first virtual machine.

13 Claims, 10 Drawing Sheets

710 Identify virtual machines with performance data
not satisfying threshold

l’ h A

Y Y

A
Send instruction to orchestration Send instruction to orchestration
server to shut down a virtual server to generate a virtual

server to combine a virtual server to migrate a virtual

Send instruction to orchestration] [Send instruction to orchestration]

machine machine machine machine
720 730 740 750

US 9,164,808 B2

Sheet 1 of 10

Oct. 20, 2015

U.S. Patent

X-ON

O#
Uy

[enIA

cH
auyoe

[ENUIA

4
aulyae

[en1IA

#
auyoep

[enuip

£-OA

d#
uIYORI

[enpIA

cH
aulyoep

[enuIA

I4:
BUIYOR

[ENLIA

T#
aulydeN

[enuIA

301N
AN3ITD

\/\

T-ON

O#
Uy

[enuIA

T-OA

N#
aulyoep

[enuIA

cH
aulydep

[enuiA

cH
aulyoew
[enLiIp

#
Uy

[enuIA

H
aulyoBN

[enLin

T#
auyoe
[enMIA

T#
aulyoep
[enLip

US 9,164,808 B2

Sheet 2 of 10

Oct. 20, 2015

U.S. Patent

30IA3d
INIID

ovc

Jonias
souBWIOad

7-0T1¢
3D0IA3d
INID

¢ ‘814

0€C

FEYNES
uonessayolo

— 0c¢

] JanIes

JBUIBIUOD
[enuiA

\

€-0T¢
30IA3d
AN

T-0T¢C

30IA3d
AN3IND

¢-0T¢
A0IA3A /l 002

INITO

US 9,164,808 B2

Sheet 3 of 10

Oct. 20, 2015

U.S. Patent

€ 314
i e oge
JOVAHALNI 30IA30
NOILYOINNNINOD 1Nd1NO F0IA30 LNaNI
soe
\ sng
5 oze ave ole
30IA3Q AHOWINW
2OVMOLS e} oy ¥0SS300¥d

U.S. Patent

Oct. 20, 2015

Virtual

410

container
repository

Sheet 4 of 10

Virtual machine
generation

module

420

US 9,164,808 B2

Virtual machine
shutdown
module

430

450

Virtual machine
combining
module

Fig. 4

Virtual machine
migration
module

440

U.S. Patent Oct. 20, 2015 Sheet 5 of 10 US 9,164,808 B2

500 —4
Performance
. Performance
indicator .
. data repository
repository
510 520

Load balancing
module

530

Fig. 5

US 9,164,808 B2

Sheet 6 of 10

Oct. 20, 2015

U.S. Patent

WS>/ UGy SsWgT> /swaT sdgo 0Z1> / Sd99 06 JIOA MIN Z106

PWTY >/ puGE SWw > /sw el sdgo GTT>/ Sd99 02T uojsog 8/99

Ty >/ oflug SWIzZ>/swotr sdgo 00T>/ Sd99 01T aJowiijed pect
suopoesuely _mwﬁ.__.g_w%mc@.ﬁ. ajel gjeq

ploysalyl ‘sA eleQq 20UBWIOLIBd

191U3) el

Q| sujydew |BnUIA

:

ov9

1

0€9

T'0°0°ZCT| Ssdippe di [entIA

s9/86] giJouieiuoa jenuIA

J9AIBS JOGLISGNS SWOH

adAj Jsuieuo)

Japesy

1

019

1

029

US 9,164,808 B2

Sheet 7 of 10

Oct. 20, 2015

U.S. Patent

0G. ovL 01592 0z/
aulyoew auyoew aulyoew auyoew
Jenuin e ajeibiw o] JaAIes {BNLIA B SUIGQUIOD 0] JOAISS jenuiA e ajelauab o) Janles JeniiA B UMOP INYS O} JoAIeS

UoIBJISOYDIO 0] UONONJISUl pUSS

UofEJISeY0J0 0] UoONJISUl pUSS Uo1RJISBYDJO 0} UOIONIISUl pusS

UOl]RJISBYD.O O} UONONIISUl puas

A

A

A

A

A

pjoysaiy) buihjsnes jou

elep souewiopad Yym sauiyoew [enuia Ajuep|

0LL

/ 004

U.S. Patent Oct. 20, 2015 Sheet 8 of 10 US 9,164,808 B2

\

810
NG Receive instruction to generate a virtual machine

\ J

:

e "

820 T\ __| ldentify server associated with virtual machine
instruction

'

830 ’\/rBuild virtual machine with performance indicators‘
and thresholds

\,, /

v

840
N Initiate virtual machine start up

850 ()
N Update virtual container repository

U.S. Patent Oct. 20, 2015 Sheet 9 of 10 US 9,164,808 B2

\

910 [
—\/ Receive instruction to shut down virtual machine

\. 7

;

920 \ Send instruction to virtual container to stop
communicating with virtual machine

’

930
\, Send instruction to shut down virtual machine

!

Receive indication of virtual machine shutdown/]
deletion

\, v

!

950 . . .)
Update virtual container repository

940
\/

U.S. Patent Oct. 20, 2015 Sheet 10 of 10 US 9,164,808 B2

1000
\

1010
N Receive instruction to migrate a virtual machine

;

1020 —~__| Generate virtual machine in destination virtual
container

!

1030 ’_; Redirect network traffic to virtual machine
associated with destination virtual container

!

1040"\/ Shut down virtual machine associated with
original virtual container

Fig. 10

US 9,164,808 B2

1
VIRTUAL CONTAINER FOR NETWORK
SYSTEMS

BACKGROUND

Client devices sometimes communicate with multiple
servers and/or multiple network devices (e.g., routers, gate-
ways, switches, etc.) to perform a task, (e.g., provide data
forwarding services to user devices, update data stored by the
multiple servers, etc.). Communicating with multiple servers
and/or multiple network devices may increase network traf-
fic, associated with a network. Physical network devices are
sometimes added to increase network capacity associated
with the network.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example overview of an implementa-
tion described herein;

FIG. 2 illustrates an example environment in which sys-
tems and/or methods, described herein, may be implemented;

FIG. 3 illustrates example components of a device that may
be used within the environment of FIG. 2;

FIG. 4 illustrates example functional components of an
example system;

FIG. 5 illustrates example functional components of an
example system;

FIG. 6 illustrates an example data structure that may be
stored by one or more servers, such as an orchestration server;

FIG. 7 illustrates a flowchart of an example process for
balancing network load;

FIG. 8 illustrates a flowchart of an example process for
adding a virtual machine in a virtual container;

FIG. 9 illustrates a flowchart of an example process for
removing a virtual machine in a virtual container; and

FIG. 10 illustrates a flowchart of an example process for
migrating a virtual machine from one virtual container to
another virtual container.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The following detailed description refers to the accompa-
nying drawings. The same reference numbers in different
drawings may identify the same or similar elements.

Systems and/or methods, as described herein, may provide
multiple virtual containers each including multiple virtual
machines. Each virtual machine may include an individual
virtual element to perform a specific function (provide data
forwarding services, store information for user profile
accounts, store billing information for a service, generate
packets, such as simple network management protocol
(SNMP) packets, in the context of providing a service, etc.).
In some implementations, each virtual container may include
virtual machines associated with a particular function (e.g.,
one virtual container may include virtual machines for per-
forming data forwarding services while another virtual con-
tainer may include virtual machines for storing and/or pro-
cessing billing information for users associated with a service
provider). A virtual machine may include a virtual platform
that may function similar to a physical device, such as a
server, a gateway, or another type of network device.

In some implementations, a client device may communi-
cate with a single virtual container (e.g., via a virtual internet
protocol (IP) address associated with the virtual container) to
perform a task associated with the virtual container, thereby
reducing network traffic with respect to the client device

10

15

20

25

30

35

40

45

50

55

60

65

2

communicating with multiple physical devices. Additionally,
or alternatively, a virtual container may aggregate data flows
associated with packets (e.g., SNMP packets) generated by
virtual machines within the virtual container, to form a single
aggregated data flow such that the single aggregated data flow
may be presented to the client device via the virtual IP.

A virtual machine may include performance indicators and
thresholds associated with the performance indicators (e.g.,
to identify network load associated with the virtual machine
and the corresponding virtual container). Additional virtual
machines may be added to a virtual container (e.g., to add
network capacity associated with the virtual container and/or
to reduce network load of an overloaded virtual machine), in
lieu of adding physical devices. Further, virtual machines
may be removed from a virtual container (e.g., to prevent an
overloaded virtual machine from malfunctioning the virtual
container, or to create space in the virtual container by remov-
ing an under-loaded virtual machine which may not be
needed). Additionally, or alternatively, multiple virtual
machines may be combined into a single virtual machine
(e.g., to combine functions performed by multiple under-
loaded virtual machines into a single virtual machine). Addi-
tionally, or alternatively, virtual machines may be moved
from one virtual container to another virtual container.

In some implementations, a virtual container may include
virtual machines associated with multiple geographic loca-
tions (e.g., data centers associated with different geographic
locations). For example, a virtual container may include a
virtual machine to perform services associated with one geo-
graphic location and may include another virtual machine to
perform services associated with another geographic loca-
tion. Additionally, a virtual container may reallocate network
traffic for virtual machines associated with one geographic
location to virtual machines associated with another geo-
graphic location.

FIG. 1 illustrates an example overview of an implementa-
tion described herein. As shown in FIG. 1, a client device may
communicate with multiple virtual containers (e.g., VC-1
through VC-X, where X=1). As described above, each virtual
container may include multiple virtual machines to perform a
specific function. For example, VC-1 may include virtual
machines to perform data forwarding functions (e.g., in a
similar manner to a packet data network (PDN) gateway
(PGW), a serving gateway (SGW), or some other network
device). VC-2 may include virtual machines to store and/or
process billing information for users of a service provider,
such a home internet service provider, a mobile phone service
provider, etc. (e.g., in a manner similar to a home subscriber
server (HSS) or some other server). VC-3 through VC-X may
include virtual machines to perform some other functions. As
described above, the client device may communicate with a
virtual container via a single virtual IP address. In some
implementations, the virtual container may include private IP
addresses associated with each virtual machine (e.g., to allow
the virtual container to communicate with an individual vir-
tual machine).

In some implementations, a client device may communi-
cate with a single virtual container (e.g., in lieu of communi-
cating with multiple physical devices) to perform a function
associated with the virtual container. As a result, network
traffic may be reduced with respect to situations where the
client device communicates with multiple physical devices.

FIG. 2 is a diagram that illustrates an example environment
200 in which systems and/or methods, described herein, may
be implemented. As shown in FIG. 2, environment 200 may
include client devices 210-1, 210-2, . .., 210-M (where M=1)
(collectively referred to as “client devices 210,” and individu-

US 9,164,808 B2

3

ally as “client device 210”), virtual container server 220,
orchestration server 230, performance server 240, and/or net-
work 250. While FIG. 2 shows a particular quantity and
arrangement of devices, in practice, environment 200 may
include additional devices, fewer devices, different devices,
or differently arranged devices than are shown in FIG. 2. For
example, each of servers 220-240 may be implemented as
multiple, possibly distributed, devices. Alternatively, two or
more of servers 220-240 may be implemented within a single
device. Further, a function described as being performed by
one server may be performed by another server.

Client device 210 may include any portable or non-por-
table device capable of communicating via a network, such as
network 250. For example, client device 210 may correspond
to a mobile communication device (e.g., a smart phone or a
personal digital assistant (PDA)), a portable computer device
(e.g., alaptop or a tablet computer), a non-portable computer
device (e.g., a desktop computer device, a desktop server, or
a rack-mountable server), a network device (e.g., a router, a
network switch, a gateway, etc.), or some other type of device.
In some implementations, client device 210 may communi-
cate with virtual container server 220 to perform a task (e.g.,
provide data forwarding services, store information for user
profile accounts, store billing information for a service, etc.).

Virtual container server 220 may include a computing
device, such as a server device or a collection of server
devices. In some implementations, environment 200 may
include multiple virtual container servers 220 such that each
virtual container server 220 stores multiple virtual containers.
For example, one instance of virtual container server 220 may
store a virtual container having multiple virtual machines to
perform data forwarding functions (e.g., in a similar manner
to a PGW, an SGW, or some other network device). Another
instance of virtual container server 220 may store a virtual
container having virtual machines to store and/or process
billing information for a service, such as a home internet
service, a mobile phone service, etc. (e.g., in a manner similar
to a home subscriber server (HSS) or some other server).
Another instance of virtual container server 220 may store a
virtual container having virtual machines to perform some
other function. In some implementations, client device 210
may communicate with virtual containers via virtual con-
tainer server 220 to perform some task (e.g., data forwarding
services, billing services associated with a service provider,
etc.).

Virtual container server 220 may receive instructions from
orchestration server 230 to add, remove, combine, or migrate
(i.e., move) virtual machines associated with virtual contain-
ers stored by virtual container server 220. In some implemen-
tations, virtual container server 220 may provide perfor-
mance data, associated with performance indicators (e.g.,
roundtrip delay, bandwidth, data rates, transfer jitter, affinity
and/or anti-affinity), to performance sever 240. For example,
virtual container server 220 may monitor and/or store perfor-
mance data for a performance indicator (e.g., data rates) asso-
ciated with a virtual container or with virtual machines within
a virtual container when virtual container server 220 commu-
nicates with client device 210. In some implementations,
performance data may relate to the network load associated
with virtual machines implemented by virtual container
server 220 (e.g., network load associated with communicat-
ing with client device 210). In some implementations, virtual
container server 220 may provide the performance data to
performance server 240.

Orchestration server 230 may include a computing device,
such as a server device or a collection of server devices. In
some implementations, orchestration server 230 may store

10

15

20

25

30

35

40

45

50

55

60

65

4

data associated with the topology of virtual container server
220. For example, orchestration server 230 may store infor-
mation for a virtual container (or multiple virtual containers)
associated with virtual container server 220, such as the type
of service provided by the virtual container, a virtual IP
address associated with the virtual container, and information
for a virtual machine (or multiple virtual machines) associ-
ated with the virtual container (e.g., a virtual machine iden-
tifier (ID), performance data for the virtual machine, etc.).
Orchestration server 230 may also receive instructions from
performance server 240 to add, remove, combine, or migrate
virtual machines within a virtual container based on perfor-
mance data associated with the virtual machines.

Performance server 240 may include a computing device,
such as a server device or a collection of server devices. In
some implementations, performance server 240 may receive
performance indicators, thresholds associated with the per-
formance indicators, and/or performance data associated
with the performance indicators from virtual container server
220. For example, performance server 240 may receive per-
formance data (e.g., 90 gigabits per second (Gbps)), a thresh-
old (e.g., 100 Gbps) associated with a performance indicator
(e.g., data rates) associated with a virtual machine from vir-
tual container server 220. As described above, performance
data may relate to the network load associated with virtual
machines stored by virtual container server 220 (e.g., network
load associated with communicating with client device 210).

Performance server 240 may identify instances in which
the received performance data does not satisfy the threshold
value of the performance indicator for the virtual container or
for virtual machines within the virtual container. For
example, performance server 240 may identify that the per-
formance data, for a particular performance indicator (e.g.,
data rate), does not satisfy a threshold associated with the
performance indicator (e.g., the performance data may be 110
gigabits per second (Gbps) with respect to a threshold of 100
Gbps). In some implementations, performance server 240
may send instructions to orchestration server 230 to add,
remove, combine, or migrate virtual machines such that the
threshold for the performance indicator is satisfied.

In one implementation, the interactions between or with
servers 220-240 may be performed using the hypertext trans-
fer protocol (HTTP) or the secure HT'TP (HTTPS). In some
other implementations, the interactions between or with serv-
ers 220-240 may be performed using another type of protocol,
such as the transmission control protocol (TCP), the user
datagram protocol (UDP), the general packet radio service
(GPRS) tunneling protocol (GTP), the point-to-point proto-
col (PPP), the diameter protocol, the domain name system
(DNS) protocol, and/or some other protocol.

Network 250 may include any type of network or a com-
bination of networks. For example, network 250 may include
alocal area network (LAN), awireless LAN (WLAN), awide
area network (WAN) (e.g., the Internet), a metropolitan area
network (MAN), an ad hoc network, a telephone network
(e.g., a Public Switched Telephone Network (PSTN), a cel-
Iular network, or a voice-over-IP (VoIP) network), a fiber
optic network, or a combination of networks. Each of client
device 210, virtual container server 220, orchestration server
230, and/or performance server 240 may connect to network
250 via a wireless connection, a wired connection, or a com-
bination thereof.

FIG. 3 illustrates example components of a device 300 that
may be used within environment 200 of FIG. 2. Device 300
may correspond to client device 210 and/or servers 220-240.

US 9,164,808 B2

5

Each of client device 210 and/or servers 220-240 may include
one or more devices 300, and/or one or more components of
device 300.

As shown in FIG. 3, device 300 may include a bus 305, a
processor 310, a main memory 315, a read only memory
(ROM) 320, a storage device 325 (also referred to as a local
storage device or local storage), an input device 330, an
output device 335, and a communication interface 340. In
some implementations, device 300 may include additional
components, fewer components, different components, or
differently arranged components.

Bus 305 may include a path that permits communication
among the components of device 300. Processor 310 may
include a processor, a microprocessor, an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), or another type of processor that interprets and
executes instructions. Main memory 315 may include a ran-
dom access memory (RAM) or another type of dynamic
storage device that stores information or instructions for
execution by processor 310. ROM 320 may include a ROM
device or another type of static storage device that stores static
information or instructions for use by processor 310. Storage
device 325 may include a magnetic storage medium, such as
a hard disk drive, or a removable memory, such as a flash
memory.

Input device 330 may include a mechanism that permits an
operator to input information to device 300, such as a control
button, a keyboard, a keypad, or another type of input device.
Output device 335 may include a mechanism that outputs
information to the operator, such as a light emitting diode
(LED), a display, or another type of output device. Commu-
nication interface 340 may include any transceiver-like
mechanism that enables device 300 to communicate with
other devices or networks. In one implementation, commu-
nication interface 340 may include a wireless interface, a
wired interface, or a combination of a wireless interface and
a wired interface.

Device 300 may perform certain operations, as described
in detail below. Device 300 may perform these operations in
response to processor 310 executing software instructions
contained in a computer-readable medium, such as main
memory 315. A computer-readable medium may be defined
as a non-transitory memory device. A memory device may
include space within a single physical memory device or
spread across multiple physical memory devices.

The software instructions may be read into main memory
315 from another computer-readable medium, such as stor-
age device 325, or from another device via communication
interface 340. The software instructions contained in main
memory 315 may cause processor 310 to perform processes
that will be described later. Alternatively, hardwired circuitry
may be used in place of or in combination with software
instructions to implement processes described herein. Thus,
implementations described herein are not limited to any spe-
cific combination of hardware circuitry and software.

FIG. 4 illustrates example functional components of an
example system 400. In some implementations, system 400
may include functional components implemented by a
device, such as orchestration server 230. In some other imple-
mentation, system 400 may include functional components
implemented by one or more devices, which include or
exclude orchestration server 230. For example, server 220
and/or server 240 may include some or all of the functional
components of system 400.

As shown in FIG. 4, system 400 may include virtual con-
tainer repository 410, virtual machine generation module

10

15

20

25

30

35

40

45

55

60

65

6

420, virtual machine shutdown module 430, virtual machine
migration module 440, and/or virtual machine combining
module 450.

In some implementations, virtual container repository 410
may store information associated with virtual containers
stored by virtual container server 220. For example, virtual
container repository 410 may store information for a virtual
container, such as the type of service provided by the virtual
container, a virtual IP address associated with the virtual
container, and information for a virtual machine (or multiple
virtual machines) associated with the virtual container (e.g., a
virtual machine identifier (ID), performance data, perfor-
mance indicators (e.g., thresholds), etc.). Additionally, virtual
container repository 410 may store information associated
with a virtual machine within a respective virtual container.
For example, virtual container repository 410 may store infor-
mation, such as a virtual machine ID, a geographic location
associated with the virtual machine, performance indicators,
and/or thresholds associated with the performance indicators.

Virtual machine generation module 420 may receive an
instruction to generate a virtual machine within a virtual
container. In some implementations, virtual machine genera-
tion module 420 may receive the instruction from a user,
associated with virtual container server 220. Additionally, or
alternatively, virtual machine generation module 420 may
receive the instruction from performance server 240 based on
performance data with respect to thresholds associated with
the performance data. For example, virtual machine genera-
tion module 420 may receive the instruction to generate a
virtual machine (e.g., VM-2) when performance server 240
identifies that the performance data, for a particular perfor-
mance indicator (e.g., datarate) of an existing virtual machine
(e.g., VM-1), does not satisfy a threshold associated with the
performance indicator (e.g., the performance data may be 110
Gbps with respect to a threshold of less than 100 Gbps). In
some implementations, the threshold may relate to when
VM-1 is overloaded.

Virtual machine generation module 420 may receive the
instruction to generate VM-2 in order to add a virtual machine
to a respective virtual container such that the performance
data of VM-1 satisfies the threshold. For example, VM-2 may
be generated to add network capacity to the corresponding
virtual container, thereby reducing the network load associ-
ated with VM-1. In some implementations, virtual machine
generation module 420 may generate performance indicators
and thresholds associated with the performance indicators for
VM-2.

In some implementations, virtual machine generation
module 420 may build a virtual machine with performance
indicators and thresholds associated with the performance
indicators, based on receiving the instruction to generate a
virtual machine. Additionally, virtual machine generation
module 420 may install the virtual machine in a correspond-
ing virtual container, initiate a startup instruction of the vir-
tual machine, and update virtual container repository 410 to
store information associated with the virtual machine.

Virtual machine shutdown module 430 may receive an
instruction to shut down a virtual machine within a virtual
container. In some implementations, virtual machine shut-
down module 430 may receive the instruction from a user,
associated with virtual container server 220. Additionally, or
alternatively, virtual machine shutdown module 430 may
receive the instruction from performance server 240 based on
performance data with respect to thresholds associated with
the performance data. For example, virtual machine shut-
down module 430 may receive the instruction to shut down a
virtual machine when performance server 240 identifies that

US 9,164,808 B2

7

performance data for a virtual machine does not satisfy a
threshold (e.g., the performance data for the virtual machine
may be 10 gigabits per second (Gbps) with respect to a thresh-
old of greater than 110 Gbps). In some implementations, the
threshold may relate to when the virtual machine is substan-
tially under-loaded, or substantially overloaded.

In some implementations, virtual machine shutdown mod-
ule 430 may send an instruction to the virtual container,
associated with the instruction to shut down a virtual
machine, to stop communicating with the virtual machine,
based on receiving the instruction to shut down the virtual
machine. Additionally, virtual machine shutdown module
430 may send an instruction to shut down the virtual machine,
receive an indication that the virtual machine has been shut
down, and update virtual container repository 410 based on
receiving the indication that the virtual machine has been shut
down.

Virtual machine migration module 440 may receive an
instruction to migrate (i.e., move) a virtual machine from one
virtual container to another virtual container. For example,
assume that a virtual machine (e.g., VM-1) is associated with
a virtual container (e.g. VC-1). In some implementations,
virtual machine migration module 440 may shut down and
remove VM-1 from VC-1 (e.g., in a similar manner as
described above with respect to virtual machine shutdown
module 430) and generate VM-1 (e.g., in a similar manner as
described above with respect to virtual machine generation
module 420) in another virtual container (e.g., VC-2) based
on receiving the instruction to migrate a virtual machine. In
some implementations, virtual machine migration module
440 may receive the instruction from a user, associated with
virtual container server 220. Additionally, or alternatively,
virtual machine migration module 440 may receive the
instruction from performance server 240 based on perfor-
mance data with respect to thresholds associated with the
performance data. In some implementations, virtual machine
migration module 440 may receive the instruction from per-
formance server 240 when performance server 240 identifies
an overloaded virtual container such that virtual machine
migration module 440 removes virtual machines associated
with the overloaded virtual container to reduce the load of the
virtual container. In some implementations, virtual machine
migration module 440 may receive instructions to migrate
multiple virtual machines and may prioritize the order of
migration based on performance data associated with the
virtual containers storing the respective multiple virtual
machines (e.g., virtual machine migration may be prioritized
in order of virtual machines within the most overloaded vir-
tual containers to virtual machines within the least overloaded
virtual containers, or prioritized based on some other factor).

Virtual machine combining module 450 may receive an
instruction to combine multiple virtual machines into one
virtual machine. For example, virtual machine combining
module 450 may generate a virtual machine (e.g., in a similar
manner as described above with respect to virtual machine
generation module 420), based on receiving the instruction to
combine multiple virtual machines, and may transfer com-
munications between other virtual machines to the generated
virtual machine. In some implementations, virtual machine
combining module 450 may receive the instruction from a
user, associated with virtual container server 220. Addition-
ally, or alternatively, virtual machine combining module 450
may receive the instruction from performance server 240
based on performance data with respect to thresholds associ-
ated with the performance data. In some implementations,
virtual machine combining module 450 may receive the
instruction from performance server 240 when performance

20

25

30

40

45

8

server 240 identifies multiple under-loaded virtual machines
that may be combined (e.g., to reduce the number of virtual
machines within a virtual container).

FIG. 5 illustrates example functional components of an
example system 500. In some implementations, system 500
may include functional components implemented by a server,
such as performance server 240. In some other implementa-
tion, system 500 may include functional components imple-
mented by one or more devices, which include or exclude
performance server 240. For example, server 220 and/or
server 230 may include some or all of the functional compo-
nents of system 500.

As shown in FIG. 5, system 500 may include performance
indicator repository 510, performance data repository 520,
and/or load balancing module 530.

In some implementations, performance indicator reposi-
tory 510 may store performance indicators (e.g., roundtrip
delay, bandwidth, transfer jitter, affinity and/or anti-affinity)
and corresponding thresholds for virtual machines within a
virtual container. Performance indicator repository 510 may
receive the performance indicators and the corresponding
thresholds from virtual container server 220. Additionally, or
alternatively, performance indicator repository 510 may
receive the performance indicators and the corresponding
thresholds from virtual machine generation module 420
based on generating a virtual machine.

Performance data repository 520 may receive performance
data for corresponding performance indicators associated
with performance indicator repository 510. In some imple-
mentations, performance data repository 520 may receive
performance data from virtual container server 220. For
example, as described above, virtual container server 220
may monitor and/or store performance data for a performance
indicator (e.g., data rate) associated with a virtual container or
with virtual machines within a virtual container and may
provide the performance data to performance data repository
520.

Load balancing module 530 may send instructions to
orchestration server 230 to generate, shut down, combine,
and/or migrate virtual machines associated with a virtual
container. In some implementations, load balancing module
530 may send the instructions based on information stored by
performance indicator repository 510 and information stored
by performance data repository 520. For example, load bal-
ancing module 530 may identify virtual machines having
performance data which does not satisfy a threshold and may
send instructions to orchestration server 230 to generate, shut
down, and/or migrate virtual machines based on identifying
virtual machines having performance data which does not
satisfy the threshold.

In some implementations, a single performance indicator
of a virtual machine may be associated with multiple thresh-
olds. For example, a first threshold may relate to when the
virtual machine is considered to be overloaded, a second
threshold may relate to when the virtual machine is consid-
ered to be substantially overloaded, and third threshold may
relate when the virtual machine is considered to be substan-
tially under-loaded. LLoad balancing module 530 may identify
instances in which the performance data does not satisty a
threshold, and may send an instruction to orchestration server
230 to generate, shut down, and/or migrate virtual machines
associated with a virtual container based on identifying
instances in which the performance data does not satisty a
threshold. Additionally, or alternatively, load balancing mod-
ule 530 may send an alarm to virtual container server 220
based on identifying performance data that does not satisfy a
threshold.

US 9,164,808 B2

9

In some implementations, load balancing module 530 may
send an instruction to orchestration server 230 to generate a
virtual machine based on identifying that the performance
data for a particular performance indicator (e.g., data rate) for
a virtual machine (e.g., VM-1) does not satisty a threshold
associated with the performance indicator. In some imple-
mentations, the threshold may relate to when the virtual
machine is considered to be overloaded. For example, assume
that the performance data for VM-1 is 110 Gbps with respect
to a threshold of less than 100 Gbps. Load balancing module
530 may send an instruction to orchestration server 230 to
generate a virtual machine (e.g., VM-2) such that the perfor-
mance data for VM-1 satisfies the threshold. For example,
network load, associated with VM-1, may be transferred to
VM-2 such that the performance data, for the data rate per-
formance indicator, satisfies the threshold.

In some implementations, load balancing module 530 may
send instructions to orchestration server 230 to shut down a
virtual machine based on identifying that performance data
for a particular performance indicator (e.g., data rate) for a
virtual machine does not satisty a threshold associated with
the performance indicator. In some implementations, the
threshold may relate when the virtual machine is considered
to be substantially overloaded, thereby causing load balanc-
ing module 530 to send an instruction to shut down the virtual
machine (e.g., to prevent the virtual machine and/or the vir-
tual container associated with the virtual machine from mal-
functioning). For example, assume that the performance data
for a virtual machine is 170 Gbps with respect to a threshold
ofless than 150 Gbps for the data rates performance indicator.
Load balancing module 530 may send instructions to shut
down the virtual machine based on identifying that the per-
formance data does not satisfy the threshold.

In some implementations, load balancing module 530 may
send instructions to orchestration server 230 to shut down a
virtual machine based on identifying that performance data
does not satisfy a threshold relating to when the virtual
machine is considered to be substantially under-loaded. For
example, assume that the performance data for a virtual
machine is 2 Gbps with respect to a threshold of greater 20
Gbps. In some implementations, load balancing module 530
may send instructions to shut down the virtual machine based
on identifying the performance data for a particular perfor-
mance indicator (e.g., data rate) for a virtual machine does not
satisfy a threshold associated with the performance indicator
(e.g., to remove a substantially under-loaded virtual machine
to create space in the corresponding virtual container).

In some implementations, load balancing module 530 may
send an instruction to orchestration server 230 to combine
multiple virtual machines into a single virtual machine. For
example, load balancing module 530 may send an instruction
to combine multiple substantially under-loaded virtual
machines into a single virtual machine or combine an over-
loaded virtual machine with a substantially under-loaded vir-
tual machine. Additionally, or alternatively, load balancing
module 530 may send an instruction to migrate a virtual
machine from one virtual container to another virtual con-
tainer.

FIG. 6 illustrates an example data structure 600 that may be
stored by one or more servers, such as orchestration server
230. In one implementation, data structure 600 may be stored
in a memory of orchestration server 230. In another imple-
mentation, data structure 600 may be stored in a memory
separate from, but accessible by orchestration server 230.
Each entry, associated with data structure 600, may corre-
spond to information for a virtual machine associated with a
virtual container. In some implementations, orchestration

10

15

20

25

30

35

40

45

50

55

60

65

10

server 230 may store multiple data structures 600, such that
each data structure 600 may store information for virtual
machines associated with a particular virtual container.

A particular instance of data structure 600 may contain
different information and/or fields than another instance of
data structure 600. Additionally, or alternatively, some por-
tions of data structure 600 may be stored by performance
server 240 based on receiving information associated with a
corresponding virtual machine. In some implementations,
data structure 600 may correspond to information stored by
virtual container repository 410, performance indicator
repository 510, and/or data receiving module 520.

As shown in FIG. 6, data structure 600 may include header
field 610, virtual machine identifier (ID) field 620, data center
field 630, and/or performance data vs. threshold field 640. In
some implementations, data structure 600 may include addi-
tional fields, fewer fields, different fields, or differently
arranged fields than are shown in FIG. 6.

Header field 610 may store information identifying the
particular virtual container stored by data structure 600. As
described above, orchestration server 230 may store multiple
data structures 600, such that each data structure 600 may
store information for virtual machines associated with a par-
ticular virtual container. In some implementations, header
field 610 may store information to identify the type of virtual
container (e.g., the service and/or function provided by the
virtual machines associated with the virtual container). In the
example shown in FIG. 6, header field 610 may store the
virtual container type “Home subscriber server” to indicate
that the virtual container associated with data structure 600,
includes virtual machines to provide services and/or func-
tionality associated with a home subscriber server (e.g., a
server to store user account information, billing information,
etc. associated with subscribers of a service, such as home
telephone services or some other service).

Header field 610 may also store a virtual container identi-
fier (ID) (e.g., a character string) to identify the virtual con-
tainer stored by data structure 600 and/or to identify the
particular virtual container server 220 storing the virtual con-
tainer. For example, header field 610 may store the virtual
container ID “98765” or some other character string. While
the example shown in FIG. 6 shows a 5-digit numerical char-
acter string, header field 610 may store any character string of
any length.

Header field 610 may also store a virtual IP address asso-
ciated with the virtual container of data structure 600. In some
implementations, client device 210 may communicate with
the virtual container and the virtual machines within the vir-
tual container based on the virtual IP address. Client device
210 may communicate with a single virtual container via the
virtual IP address in lieu of communicating with multiple
devices which may have multiple different IP addresses.

Virtual machine ID field 620 may include a character string
to identify a virtual machine stored by the virtual container
associated with data structure 600. For example, virtual
machine ID field 620 may store the character string “1234” or
some other character string. While the example shown in FIG.
6 shows a 4-digit numerical character string, virtual machine
1D field 620 may store any character string of any length.

Data center field 630 may store a description of a geo-
graphic location associated with a corresponding virtual
machine. For example, as described above, a virtual container
may include virtual machines associated with multiple geo-
graphic locations (e.g., data centers, associated with one or
geographic locations). In an example shown in FIG. 6, data

US 9,164,808 B2

11

center field 630 may store a description of “Baltimore” asso-
ciated with the virtual machine having the virtual machine ID
“1234”

Performance data vs. threshold field 640 may store infor-
mation identifying performance indicators, performance
data, and/or thresholds associated with a corresponding vir-
tual machine. For example, as shown in FIG. 6, performance
data vs. threshold field 640 may store performance indicators,
such as data rate, transfer jitter, and transactions. Perfor-
mance data vs. threshold field 640 may store additional or
fewer performance indicators than what are shown. Addition-
ally, performance data vs. threshold field 640 may store per-
formance data received by virtual container server 220 and
thresholds associated with the performance data. For
example, performance data vs. threshold field 640 may store
a performance indicator (e.g., data rate), performance data
(e.g., 110 Gbps) corresponding to the performance indicator,
and a threshold (100 Gbps) corresponding to the performance
data and the performance indicator for a particular virtual
machine (e.g., the virtual machine associated with virtual
machine 1D “1234”).

As described above, load balancing module 530 may iden-
tify overloaded and/or under-loaded virtual machines based
on performance data with respect to thresholds associated
with the performance data. While only one threshold is shown
for each performance indicator for each virtual machine, in
practice, it will be apparent that performance data vs. thresh-
old field 640 may store multiple thresholds corresponding to
different triggers associated with load balancing module 530.
For example, as described above, a first threshold may cause
load balancing module 530 to send an instruction to orches-
tration server 230 to add a virtual machine, a second threshold
may cause load balancing module 530 to send an instruction
to orchestration server 230 to shut down a virtual machine,
and some other threshold may cause load balancing module
530 to send some other instruction.

FIG. 7 illustrates a flowchart of an example process 700 for
balancing network load. In one implementation, process 700
may be performed by one or more components of perfor-
mance server 240, such as processor 310 of performance
server 240. In another implementation, one or more blocks of
process 700 may be performed by one or more components of
another device (e.g., server 220 and/or server 230), or a group
of devices including or excluding performance server 240.

Process 700 may include identifying virtual machines with
performance data not satistying a threshold (block 710). For
example, as described above with respect to load balancing
module 530, performance server 240 may identify virtual
machines having performance data which does not satisty a
threshold and may send instructions to orchestration server
230 to generate, shut down, migrate, and/or combine virtual
machines based on identifying performance data which does
not satisfy the threshold.

Process 700 may also include sending instructions to
orchestration server 230 to shut down a virtual machine
(block 720). For example, as described above with respect to
load balancing module 530, performance server 240 may
send instructions to orchestration server 230 to shut down a
virtual machine based on identifying that performance data,
for a particular performance indicator (e.g., data rate) for a
virtual machine, does not satisfy a threshold associated with
the performance indicator. In some implementations, the
threshold may relate to when the virtual machine is consid-
ered to be substantially overloaded, thereby causing load
balancing module 530 to send an instruction to shutdown the
virtual machine (e.g., to prevent the virtual machine and/or
the virtual container, associated with the virtual machine,

10

15

20

25

30

35

40

45

50

55

60

65

12

from malfunctioning). In some implementations, perfor-
mance server 240 may send instructions to orchestration
server 230 to shut down the virtual machine based on identi-
fying that the performance data, for a particular performance
indicator (e.g., data rate) for a virtual machine, does not
satisfy a threshold associated with the performance indicator
(e.g., to remove an under-loaded virtual machine to create
space in the corresponding virtual container).

Process 700 may also include sending an instruction to
orchestration server 230 to generate a virtual machine (block
730). For example, as described above with respect to load
balancing module 530, orchestration server 230 may send an
instruction to orchestration server 230 to generate a virtual
machine based on identifying that the performance data, for a
particular performance indicator (e.g., data rate) for a virtual
machine (e.g., VM-1), does not satisfy a threshold associated
with the performance indicator. In some implementations, the
threshold may relate to when the virtual machine is consid-
ered to be overloaded. Performance server 240 may send an
instruction to orchestration server 230 to generate a virtual
machine (e.g., VM-2) such that the performance data for
VM-1 satisfies the threshold.

Process 700 may further include sending an instruction to
orchestration server 230 to combine virtual machines (block
740). For example, as described above with respect to load
balancing module 530, performance server 240 may send an
instruction to combine multiple virtual machines into a single
virtual machine. For example, performance server 240 may
combine multiple substantially under-loaded virtual
machines into a single virtual machine or combine an over-
loaded virtual machine with an under-loaded virtual machine.

Process 700 may further include sending an instruction to
orchestration server 230 to migrate a virtual machine (block
750). For example, as described above with respect to virtual
machine migration module 440, performance server 240 may
send an instruction to migrate one virtual machine (e.g.,
VM-1) from one virtual container (e.g., VC-1) to another
virtual container (e.g., VC-2). As described above, perfor-
mance server 240 may send an instruction to orchestration
server 230 to shutdown VM-1 (e.g., a virtual machine asso-
ciated with VC-1), in accordance with block 720, and may
send an instruction to generate VM-1 (e.g., a virtual machine
associated with VC-2), inaccordance with block 730, thereby
migrating VM-1 from VC-1 to VC-2.

FIG. 8 illustrates a flowchart of an example process 800 for
adding a virtual machine in a virtual container. In one imple-
mentation, process 800 may be performed by one or more
components of orchestration server 230, such as processor
310 of orchestration server 230. In another implementation,
one or more blocks of process 800 may be performed by one
ormore components of another device (e.g., server 220 and/or
server 240), or a group of devices including or excluding
orchestration server 230.

Process 800 may include receiving an instruction to gen-
erate a virtual machine (block 810). For example, orchestra-
tion server 230 may receive an instruction to generate a virtual
machine based on performance server 240 identifying a vir-
tual machine (e.g., an overloaded virtual machine) having
performance data that does not satisfy a threshold. Addition-
ally, or alternatively, orchestration server 230 may receive an
instruction from some other source (e.g., from a user associ-
ated with client device 210 and/or virtual container server
220). In some implementations, the virtual machine may be
generated in a virtual container associated with virtual con-
tainer server 220.

Process 800 may further include identifying the server
associated with the virtual machine instruction (block 820).

US 9,164,808 B2

13

In some implementations, orchestration server 230 may iden-
tify the server associated with the virtual machine instruction
(e.g., the particular virtual container server 220 storing the
virtual container associated with the virtual machine) based
on information stored by data structure 600 and/or virtual
container repository 410. For example, assume that the virtual
machine instruction is associated with virtual machine VM-1
(e.g., the instruction causes the generation of a virtual
machine to reduce the load of VM-1). Orchestration server
230 may identify the server associated with VM-1 (e.g., based
on a virtual machine ID associated with VM-1 and stored by
data structure 600 and/or virtual container repository 410).

Process 800 may also include building the virtual machine
with performance indicators and thresholds (block 830). For
example, orchestration server 230 may build the virtual
machine, associated with the virtual machine instruction, and
may include performance indicators and thresholds in the
virtual machine. In some implementations, the performance
indicators and thresholds may be user-defined. In some other
implementations, the performance indicators and thresholds
may be automatically determined based on performance data
associated with the virtual container associated with the vir-
tual machine. In some implementations orchestration server
230 may assign a virtual machine ID for the virtual machine,
install the virtual machine within a virtual container stored by
virtual container server 220, and notify the virtual container
associated with the virtual machine, of the generated virtual
machine.

Process 800 may also include initiating virtual machine
start up (block 840). For example, orchestration server 230
may send an instruction to virtual container server 220, asso-
ciated with the virtual machine, to start up the virtual machine
based on installing the virtual machine in a virtual container
stored by virtual container server 220. In some implementa-
tions, the instruction may cause virtual container server 220
to perform a performance test function on the virtual machine
to ensure that the virtual machine is working properly.

Process 800 may further include updating the virtual con-
tainer repository (block 850). In some implementations,
orchestration server 230 may update virtual container reposi-
tory 410 based on initiating virtual machine start up as
described above. For example, orchestration server 230 may
update the information stored by virtual container repository
410 to include information associated with the virtual
machine (e.g., virtual machine 1D, performance indicators,
and/or thresholds).

FIG. 9 illustrates a flowchart of an example process 900 for
removing a virtual machine from a virtual container. In one
implementation, process 900 may be performed by one or
more components of orchestration server 230, such as pro-
cessor 310 of orchestration server 230. In another implemen-
tation, one or more blocks of process 900 may be performed
by one or more components of another device (e.g., server
220 and/or server 240), or a group of devices including or
excluding orchestration server 230.

Process 900 may include receiving an instruction to shut
down a virtual machine (process 910). For example, orches-
tration server 230 may receive an instruction to shut down a
virtual machine from performance server 240 based on per-
formance server 240 identifying that a virtual machine (e.g.,
a substantially overloaded virtual machine or a substantially
under-loaded virtual machine) having performance data that
does not satisfy a threshold. Additionally, or alternatively,
orchestration server 230 may receive the instruction from
some other source (e.g. from a user associated with orches-
tration server 230).

10

15

20

25

30

35

40

45

50

55

60

65

14

Process 900 may also include sending an instruction to the
virtual container to stop communicating with virtual machine
(block 920). In some implementations, orchestration server
230 may send the instruction to the virtual container, associ-
ated with the virtual machine, to stop communicating with the
virtual machine. For example, as described above, client
device 210 may communicate with a virtual machine (e.g.,
VM-1) via a virtual container to perform some task. Orches-
tration server 230 may send the instruction to the virtual
container, associated with VM-1, to stop communicating with
VM-1 such that VM-1 may be shut down. In some implemen-
tations, virtual container may redistribute communications,
associated with VM-1, to another virtual machine (e.g.,
VM-2) within the virtual container such that client device 210
may communicate with VM-2, via the virtual container, to
perform a task.

Process 900 may further include sending an instruction to
shut down the virtual machine (block 930). For example,
orchestration server 230 may send an instruction to shut down
the virtual machine based on receiving the instruction to shut
down the virtual machine and based on sending an instruction
to the virtual container, associated with the virtual machine to
stop communicating with the virtual machine.

Process 900 may also include receiving an indication of
virtual machine shutdown (block 940). For example, orches-
tration server 230 may receive an indication of virtual
machine shutdown from virtual container server 220 respon-
sible for storing the virtual container associated with the
virtual machine. In some implementations, orchestration
server 230 may receive an indication that the virtual machine
has been deleted, in addition to being shut down.

Process 900 may further include updating the virtual con-
tainer repository (block 950). For example, orchestration
server 230 may update virtual container repository 410 based
on receiving an indication of virtual machine shutdown and/
or deletion from the virtual container, associated with the
virtual machine. In some implementations, orchestration
server 230 may delete information associated with the virtual
machine from virtual machine repository 410.

Process 900 may be performed by orchestration server 230
to shut down and/or delete a virtual machine from a virtual
container. In some implementations, some blocks of process
900 may be omitted to expedite the execution of process 900
by orchestration server 230. For example, block 920 may be
omitted such that orchestration server 230 causes a virtual
machine to be shut down in an expedited manner (e.g., to
prevent damage to the virtual container or virtual container
server 220 associated with a substantially overloaded virtual
machine).

In some implementations, orchestration server 230 may
perform some portions of processes 800-900 to combine mul-
tiple virtual machines into a single virtual machine. For
example, orchestration server 230 may generate a virtual
machine (e.g. VM-1) in accordance with process 800, and
may shut down multiple virtual machines (e.g., VM-2 and
VM-3) in accordance with process 900. Additionally, orches-
tration server 230 may cause VM-1 to receive communica-
tions associated with VM-2 and VM-3 such that VM-2 and
VM-3 no longer communicate with the corresponding virtual
container, thereby allowing VM-2 and VM-3 to be shut down.

FIG. 10 illustrates a flowchart of an example process 1000
for migrating a virtual machine from one virtual container to
another virtual container. In one implementation, process
1000 may be performed by one or more components of
orchestration server 230, such as processor 310 of orchestra-
tion server 230. In another implementation, one or more
blocks of process 1000 may be performed by one or more

US 9,164,808 B2

15

components of another device (e.g., server 220 and/or server
240), or a group of devices including or excluding orchestra-
tion server 230.

Process 1000 may include receiving an instruction to
migrate a virtual machine (block 1010). For example, as
described above with respect to virtual machine migration
module 440, orchestration server 230 may receive the instruc-
tion from performance server 240 to move a virtual machine
(e.g., VM-1) from an origin virtual container (e.g., VC-1)to a
destination virtual container (e.g., VC-2). In some implemen-
tations, orchestration server 230 may receive the instruction
to migrate the virtual machine to reduce the network load
associated with VC-1 while allowing the virtual machine to
continue to provide services (e.g., data forwarding services,
etc.) to client device 210 via VC-2.

In some implementations, orchestration server 230 may
receive an instruction to migrate multiple virtual machines
and may prioritize the order of migration based on perfor-
mance data associated with the virtual containers storing the
respective multiple virtual machines (e.g., virtual machine
migration may be prioritized in order of virtual machines
within the most overloaded virtual containers to virtual
machines within the least overloaded virtual containers, or
prioritized based on some other factor).

Process 1000 may also include generating a virtual
machine in the destination virtual container (block 1020). For
example, orchestration server 230 may generate a virtual
machine (e.g., VM-2), in a manner similar to that described
above with respect to process 800, within the destination
virtual container (i.e., VC-2).

Process 1000 may further include redirect network traffic
to the virtual machine associated with the destination virtual
container (block 1030). For example, orchestration server
230 may instruct VM-2 to communicate with client device
210 (e.g., to provide client device with services) and may
instruct VM-1 to stop communicating with client device 210,
thereby redirecting network traffic, associated with VM-1, to
VM-2.

Process 1000 may also include shutting down the virtual
machine associated with the original virtual container (block
1040). For example, orchestration server 230 may shut down
VM-1, associated with VC-1, in a manner similar to that
described above with respect to process 900. As a result,
services provided by VM-1 within VC-1 may be transferred
to VM-2 within VC-2, thereby reducing the network load of
VC-1.

As described above, client device 210 may perform a task
by communicating with a single virtual container having a
single virtual IP address and associated with multiple virtual
machines, in lieu of communicating with multiple physical
devices having multiple IP addresses, thereby reducing net-
work traffic. Performance server 240 may identify virtual
machines having performance data (e.g., information associ-
ated with network load when a virtual machine communi-
cates with client device 210) not satisfying a threshold, and
may communicate with orchestration server 230 to rebalance
network load associated with multiple virtual containers and/
or virtual machines such that the performance data of virtual
containers and/or virtual machines satisfies the threshold. A
virtual container may include virtual machines associated
with multiple geographic locations, thereby allowing for net-
work load balancing functions across the multiple geographic
locations.

The foregoing description provides illustration and
description, but is not intended to be exhaustive or to limit the
possible implementations to the precise form disclosed.
Modifications and variations are possible in light of the above

10

15

20

25

30

35

40

45

50

55

60

65

16

disclosure or may be acquired from practice of the implemen-
tations. For example, while series of blocks have been
described with regards to FIG. 7-10, the order of the blocks
may be modified in other implementations. Further, non-
dependent blocks may be performed in parallel.

It will be apparent that different examples of the descrip-
tion provided above may be implemented in many different
forms of software, firmware, and hardware in the implemen-
tations illustrated in the figures. The actual software code or
specialized control hardware used to implement these
examples is not limiting of the implementations. Thus, the
operation and behavior of these examples were described
without reference to the specific software code—it being
understood that software and control hardware can be
designed to implement these examples based on the descrip-
tion herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
the possible implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one other claim, the disclosure of the possible implementa-
tions includes each dependent claim in combination with
every other claim in the claim set.

No element, act, or instruction used in the present applica-
tion should be construed as critical or essential unless explic-
itly described as such. Also, as used herein, the article “a” is
intended to include one or more items and may be used
interchangeably with “one or more.” Where only one item is
intended, the term “one” or similar language is used. Further,
the phrase “based on” is intended to mean “based, at least in
part, on” unless explicitly stated otherwise.

What is claimed is:

1. A method comprising:

receiving, by a first server, a performance indicator asso-

ciated with a first virtual machine,

the first virtual machine being stored by a first virtual
machine server,

the first virtual machine being capable of communicat-
ing with a client device;

determining, by the first server, whether the performance

indicator satisfies a first threshold that indicates the first
virtual machine is overloaded;

sending, by the first server, an instruction to a second server

to generate a second virtual machine based on determin-

ing that the first virtual machine is overloaded and not

substantially overloaded,

the second virtual machine being capable of communi-
cating with the client device,

the second virtual machine being stored by a second
virtual machine server;

instructing, by the first server and based on determining the

first virtual machine is overloaded and not substantially
overloaded, the second virtual machine to communicate
with the client device to reduce network load associated
with the first virtual machine,

determining, by the first server, whether the performance

indicator satisfies a second threshold that indicates the

first virtual machine is substantially overloaded,

the second threshold being different than the first thresh-
old;

sending, by the first server, an instruction to the second

server to cause the first virtual machine to shut down
based on determining the first virtual machine is sub-
stantially overloaded;

US 9,164,808 B2

17

sending, by the first server, an instruction to the second

server to generate a third virtual machine based on deter-

mining that the first virtual machine is substantially

overloaded,

the third virtual machine being stored by a third virtual
machine server,

the third virtual machine being capable of communicat-
ing with the client device; and

instructing, by the first server, the third virtual machine to

communicate with the client device on behalf of the first
virtual machine.

2. The method of claim 1, further comprising:

determining whether the performance indicator satisfies a

third threshold that indicates the first virtual machine is

substantially under-loaded,

the third threshold being different than the first threshold
and the second threshold; and

sending an instruction to the second server to cause the first

virtual machine to shut down based on determining that
the first virtual machine is substantially under-loaded.

3. The method of claim 1, further comprising:

determining whether the performance indicator satisfies a

third threshold that indicates that the first virtual

machine is substantially under-loaded,

the third threshold being different from the first thresh-
old and the second threshold;

receiving performance data associated with a fourth virtual

machine,

the fourth virtual machine being stored by a fourth vir-
tual machine server,

the fourth virtual machine being capable of communi-
cating with the client device;

determining that the fourth virtual machine is substantially

under-loaded based on the performance data associated
with the fourth virtual machine;
sending an instruction to the second server to cause the first
virtual machine to shut down based on determining that
the first virtual machine is substantially under-loaded;

sending an instruction to the second server to cause the
fourth virtual machine to shut down based on determin-
ing that the fourth virtual machine is substantially under-
loaded;

sending an instruction to the second server to generate a

fifth virtual machine based on sending the instruction to

the second server to cause the first virtual machine to

shut down and sending the instruction to the second

server to cause the fourth virtual machine to shut down,

the fifth virtual machine being stored by a fifth virtual
machine server,

the fifth virtual machine capable of communicating with
the client device; and

instructing the fifth virtual machine to communicate with

the client device on behalf of the first virtual machine
and the fourth virtual machine.

4. The method of claim 1, where the first virtual machine
and the second virtual machine are associated with a single
network address,

the client device capable of communicating with the first

virtual machine or the second virtual machine via the
single network address.

5. The method of claim 1, where the first virtual machine
and the second virtual machine provide a same service to
different geographic locations.

6. A system comprising:

a first server to:

receive performance data associated with a first virtual
machine,

10

15

20

25

30

35

40

45

50

55

60

65

18

the first virtual machine being capable of communi-
cating with a client device,
the first virtual machine being included in a virtual
container of a plurality of virtual containers,
each of the plurality of virtual containers being asso-
ciated with a respective service,
each of the plurality of virtual containers including at
least one virtual machine that provides the respec-
tive service,
the first virtual machine being associated with a first
virtual machine server;
determine that the first virtual machine is overloaded
when the performance data indicates a first threshold
is satisfied and determine that the first virtual machine
is under-loaded when the performance data indicates
a second threshold is satisfied,
the first threshold being different than the second
threshold;
send an instruction to a second server to generate a
second virtual machine, to be included in the virtual
container and to be associated with a second virtual
machine server, based on determining that the first
virtual machine is overloaded,
the second virtual machine providing the same ser-
vice as the first virtual machine,
the second virtual machine being capable of commu-
nicating with the client device;
instruct the second virtual machine to communicate with
the client device to reduce network load associated
with the first virtual machine;
send an instruction to the second server to cause the first
virtual machine to shut down based on determining
that the first virtual machine is substantially under-
loaded;
determine that the first virtual machine is substantially
overloaded based on the performance data indicating
a third threshold is satisfied,
the third threshold being difterent than the first thresh-
old and the second threshold;
send an instruction to the second server to cause the first
virtual machine to shut down based on determining
that the first virtual machine is substantially over-
loaded;
send an instruction to the second server to generate a
third virtual machine based on determining that the
first virtual machine is substantially overloaded,
the third virtual machine being associated with a third
virtual machine server,
the third virtual machine being capable of communi-
cating with the client device; and
instruct the third virtual machine to communicate with
the client device on behalf of the first virtual machine.
7. The system of claim 6, where the first server is further to:
receive performance data associated with a fourth virtual
machine,
the fourth virtual machine being capable of communi-
cating with the client device,
the fourth virtual machine being associated with a fourth
virtual machine server and being included in the vir-
tual container;
determine that the fourth virtual machine is substantially
under-loaded based on the performance data associated
with the fourth virtual machine;
send an instruction to the second server to cause the first
virtual machine to shut down based on determining that
the first virtual machine is substantially under-loaded;

US 9,164,808 B2

19

send an instruction to the second server to cause the fourth
virtual machine to shut down based on determining that
the fourth virtual machine is substantially under-loaded;
send an instruction to the second server to generate a fifth
virtual machine based on sending the instruction to the
second server to cause the first virtual machine to shut
down and sending the instruction to the second server to
cause the fourth virtual machine to shut down,
the fifth virtual machine being associated with a fifth
virtual machine server and being included in the vir-
tual container,
the fifth virtual machine server being the first virtual
machine server, the third virtual machine server, or
another virtual machine server,

the fifth virtual machine capable of communicating with

the client device; and

instruct the fifth virtual machine to communicate with the

client device on behalf the first virtual machine and the
fourth virtual machine.

8. The system of claim 6, where each of the plurality of
virtual containers is associated with a respective network
address,

the virtual container being associated with a single network

address,

the client device capable of communicating with the first

virtual machine and the second virtual machine via the
single network address.

9. The system of claim 6, where the first virtual machine
and the second virtual machine provide the same service to
different geographic locations.

10. A non-transitory computer-readable medium compris-
ing:

aplurality of instructions, which, when executed by one or

more processors associated with a first server, cause the
one or more processors to:
receive a performance indicator associated with a first
virtual machine,
the first virtual machine being associated with a first
virtual machine server,
the first virtual machine being capable of communi-
cating with a client device;
determine whether the performance indicator satisfies a
first threshold that indicates the first virtual machine is
overloaded and does not satisfy a second threshold
that indicates the first virtual machine is substantially
overloaded;
send an instruction to a second server to generate a
second virtual machine based on determining that the
first virtual machine is overloaded and not substan-
tially overloaded,
the second virtual machine being associated with a
second virtual machine server,
the second virtual machine being capable of commu-
nicating with the client device;
instruct the second virtual machine to communicate with
the client device to reduce network load associated
with the first virtual machine,
the first virtual machine and the second virtual
machine being associated with a single network
address,

10

15

20

25

30

35

40

45

50

55

20

the client device capable of communicating with the
first virtual machine and the second virtual
machine via the single network address;
determine whether the first virtual machine is substan-
tially overloaded or substantially under-loaded based
on the performance indicator;
send an instruction to the second server to cause the first
virtual machine to shut down based on determining
that the first virtual machine is substantially over-
loaded;
send an instruction to the second server to generate a
third virtual machine based on determining that the
first virtual machine is substantially overloaded,
the third virtual machine being associated with a third
virtual machine server,
the third virtual machine being capable of communi-
cating with the client device; and
instruct the third virtual machine to communicate with
the client device on behalf of the first virtual machine.

11. The non-transitory computer-readable medium of
claim 10, where the plurality of instructions further cause the
one or more processors to:

send an instruction to the second server to cause the first

virtual machine to shut down based on determining that
the first virtual machine is substantially under-loaded.

12. The non-transitory computer-readable medium of
claim 10, where the plurality of instructions further cause the
one or more processors to:

determine that the first virtual machine is substantially

under-loaded based on the performance indicator;
receive a performance indicator associated with a fourth
virtual machine,
the fourth virtual machine being associated with a fourth
virtual machine server,
the fourth virtual machine being capable of communi-
cating with the client device;
send an instruction to the second server to cause the first
virtual machine to shut down based on determining that
the first virtual machine is substantially under-loaded;
send an instruction to the second server to cause the fourth
virtual machine to shut down based on determining that
the fourth virtual machine is substantially under-loaded;
send an instruction to the second server to generate a fifth
virtual machine based on sending the instruction to the
second server to cause the first virtual machine to shut
down and sending the instruction to the second server to
cause the fourth virtual machine to shut down,
the fifth virtual machine being associated with a fifth
virtual machine server,
the fifth virtual machine capable of communicating with
the client device; and
instruct the fifth virtual machine to communicate with the
client device on behalf the first virtual machine and the
fourth virtual machine.

13. The non-transitory computer-readable medium of
claim 10, where the first virtual machine and the second
virtual machine provide a same service to different geo-
graphic locations.

